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Abstract— Human gait analysis has been one of the primary
procedures for diagnosis in modern healthcare applications
for various diseases. Instead of using expensive wearable
sensors on patients, this research aims to assist in gait analysis
and classification for medical diagnoses using computer
vision solely. A long short-term memory (LSTM) neural
network based on MediaPipe Pose for video-based human
gait analysis is proposed to assist in diagnosing patients with
neurodegenerative diseases, particularly cerebellar ataxia.
The kinematic parameters were extracted from the pose
estimation model on captured gait videos before deriving the
spatiotemporal parameters for quantitative gait analysis. Data
augmentation is applied to increase dataset size, and five-fold
cross-validation is performed to verify the suitability of the
developed dataset for training deep neural networks. The
selected LSTM model achieves a testing accuracy of 99.8%
with very high precision and recall metrics for ataxic and
normal gait classes. The proposed methodology can be applied
in broader applications for remote rehabilitation and patient
monitoring.

Clinical Relevance— The developed system can assist physi-
cians in diagnosing cerebellar ataxic patients and monitoring
gait rehabilitation process remotely via camera vision.

I. INTRODUCTION

The current research in the rehabilitation and healthcare
sectors is heading towards utilizing state-of-the-art technolo-
gies to further their scope and applications, where there is a
reduction in human involvement. Diseases are typically de-
tected and rated by conducting a clinical assessment session
by qualified physicians on the respective patients. However,
recent advancements in machine learning led to its massive
implementation in the healthcare sector [1], causing the in-
troduction of telehealth [2] and automated diagnostic systems
[3]. Commonly used human data for machine learning-based
healthcare assessment and rehabilitation monitoring are gait
data. Human gait analysis assists diagnosing systems to
identify human movement patterns that appear abnormal and
associate them with a disease.

Quantitative methods in human gait analysis are com-
monly implemented to assist in diagnosing neurodegener-
ative diseases that cause gait and posture instabilities [4].
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However, traditional motion capture methods based on wear-
able sensors or camera setups enacted previously for gait as-
sessment are possessing limitations such as the confinement
to laboratory environments [5], high cost, and the difficulty of
application on patients [6]. Furthermore, research in human
motion science for healthcare requires extensive procedures
to consider the publication of sensitive data from patients.
Currently, new trends in motion analysis tools rely on video-
based solutions that are easy and convenient to implement
in remote scenarios, and the state-of-the-art technology for
such purpose is human pose estimation.

This research aims to implement human pose estima-
tion for gait analysis to develop a deep learning model
to facilitate the diagnosis of neurodegenerative diseases,
particularly cerebellar ataxia. The pose estimation framework
implemented is MediaPipe Pose [7] due to its high efficiency
with low-end devices. Human joint motion data are extracted
from MediaPipe Pose applied on videos of ataxic and normal
gait, and gait parameters are computed from the joint data
to provide additional descriptive dimensionality to the neural
network for gait classification. A long short-term memory
(LSTM) network is used as its architecture highly performs
classification on time series data [8], i.e., multivariate gait
sequences. The trained LSTM model provided a reliable
diagnosis of cerebellar ataxia from raw videos of humans
walking as input.

The rest of the paper is organized as follows. Section
II mentions some related literature work and summarizes
the contributions of this research. Section III describes the
methods of dataset development and neural network training
for developing the cerebellar ataxia diagnosing framework.
Section IV shows and discusses the results of testing the
LSTM model from the cross-validation and optimization
stages. Section V states the conclusion and future work for
this research.

II. RELATED WORK

There have been many works of gait analysis and classifi-
cation in literature applying several types of motion capture
systems. Lempereur et al. [9] implemented Vicon MX mo-
tion capture system and force platforms on children with
gait disorders from neurological and orthopaedic diseases
using their proposed DeepEvent network. Other diseases
such as osteoarthritis have been explored in [10], where
the authors used pre-trained convolutional neural network
(CNN) models on gait datasets consisting of deep features
aggregated from gait images based on transfer learning.
Woo et al. [11] implemented Automated Machine Learning



(AutoML) and dynamic time warping (DTW) for analysis
of gait and physical fitness characteristics in senior citizens
with and without diabetes. They also developed a home-
based monitoring system based on MediaPipe Pose for reha-
bilitation assistance. Wang et al. [12] developed a skeleton
detector and gait assessment framework called SAIL, in
which they utilized annotated Timed “Up & Go” (TUG) test
videos for gait inputs and support vector machine (SVM) as
their classifier.

LSTM is used in some research works for human gait
classification. Zhao et al. [13] used LSTM to assist clin-
ical physicians in identifying gait disturbances instead of
subjectively evaluating them. Sadeghzadehyazdi et al. [14]
demonstrated an LSTM-CNN network model that classifies
nine different pathological gait types on a publicly available
dataset consisting of spatiotemporal and body joint features
extracted from Kinect.

Neurodegenerative diseases have been the most commonly
investigated diseases in research for abnormal gait detection
and assessment applications. Sato et al. [15] implemented
pose estimation for Parkinsonian gait quantification, provid-
ing evidence that their methods can be applied in home-based
environments where virtual therapy sessions can be more
convenient. Similar to the scope of this research, in [16]–
[18], the authors proposed methods for classifying different
types of ataxia. Cerebellar ataxic gait identification was also
explored in [19], utilizing SVM, CNN, and Naïve Bayes’
classifiers to diagnose ataxic and normal gait using their
developed dataset from frequency components of sensor-
based accelerometric signals. Other neurodegenerative dis-
eases such as dementia [20], levodopa-induced dyskinesia
[21], idiopathic normal pressure hydrocephalus [22], and
Huntington disease [23] were also investigated.

Based on the literature review, the targeted disease in this
research, cerebellar ataxia, is not sufficiently implemented
in correspondence with works on other neurodegenerative
diseases based on machine learning-assisted diagnostic tools.
Moreover, human pose estimation, was not applied in the
general theme of cerebellar ataxic gait classification. There-
fore, this research’s contributions to address the mentioned
research gaps are as follows:

1) Developing a cerebellar ataxic gait motion dataset that
implies additional contribution to neurodegenerative
disease diagnosis based on human gait analysis using
pose estimation models.

2) Building a neurodegenerative gait classification model
that generalizes assessment for diseases that cause
gait instability, which is beneficial for telemedical and
rehabilitation applications.

3) Experimenting a recently developed pose estimation
model, i.e., MediaPipe Pose, that validates its applica-
tions in the healthcare assessment domain.

III. METHODOLOGY

The proposed methodology for dataset and classifier de-
velopment is as follows. Firstly, three-dimensional (3D)
landmark, or joint, coordinates are extracted after using

gait videos as input to MediaPipe Pose. Then, data aug-
mentation is applied to the extracted joint coordinates to
increase the dataset size for ataxic and normal gait classes.
Spatiotemporal and kinematic parameters are computed from
the extracted coordinate features. LSTM is used for gait
classification, differentiating between ataxic and normal gait.
Lastly, model cross-validation, evaluation, and selection are
conducted. Fig. 1 illustrates MediaPipe Pose detection on
captured videos, showing examples of back and forth walk-
ing sequences for each type of gait, while Fig. 2 shows
the overall framework of gait classification based on pose
estimation.

A. Dataset Development

1) Gait Video Collection: To the best of the authors’
knowledge, there are no publicly available video datasets for
cerebellar ataxic gait at the time of conducting this research.
Therefore, a total of 20 volunteering university students, 15
male and 5 female students with mean age of 24 ± 3 years
old, participated in this study. Each participant recorded two
video sessions: one walking normally in front of the camera
and one imitating the ataxic gait pattern, each lasting about
30 seconds to 1.5 minutes. 40 gait videos, 20 for ataxic gait
and 20 for normal gait, were recorded and used as an input
to MediaPipe Pose (see Fig. 1). Their participation and raw
motion data publication consent was taken, and they were
rewarded for participation motivation.

2) Feature Extraction: MediaPipe Pose contains a repos-
itory of 33 full-body joint landmarks, and each landmark is
represented in the 3D Cartesian space as (x,y,z) coordinates.
The 3D coordinates represent the approximate world coor-
dinate frame in meters (m) with respect to the origin at the
center between the hips.

Only the upper body joint coordinates are required for
spatiotemporal and kinematic feature calculation. Table I
states the extracted joint landmarks from MediaPipe Pose for

(a) Ataxic Gait

(b) Normal Gait

Fig. 1. MediaPipe Pose detection on a sample of captured videos for ataxic
and normal gait.



Fig. 2. Process flow of the proposed gait diagnosis framework.

TABLE I
SIGNIFICANT JOINTS AND BODY SEGMENTS IDENTIFIED FOR GAIT

ANALYSIS. SEGMENTS ARE OBTAINED BY COMPUTING THE NORM OF

THE VECTOR FORMED BY EACH PAIR OF JOINTS MAPPED AS (i, j).

Joint Index Joint Name (i, j) ∈ Segment Segment Name

1 left shoulder
2 right shoulder (1, 3) left upper arm
3 left elbow (3, 5) left lower arm
4 right elbow (1, 7) left torso
5 left wrist (7, 9) left thigh
6 right wrist (9, 11) left shank
7 left hip (2, 4) right upper arm
8 right hip (4, 6) right lower arm
9 left knee (2, 8) right torso

10 right knee (8, 10) right thigh
11 left ankle (10, 12) right shank
12 right ankle

gait analysis and maps the body segments associated with the
extracted landmarks, which are used in the data augmentation
algorithm.

3) Data Augmentation: Data augmentation is a technique
implemented in this research for increasing the dataset size
to improve the model training performance since there are
no sufficient data to achieve high classification accuracy.
Algorithm 1 is based on the pseudocode proposed in [24],
in which the authors applied human bilateral symmetry data
augmentation on skeleton data obtained from Kinect.

The 1 × n vector V is the feature vector, and m × n is
the augmented matrix A of feature data. p represents the
number of symmetric pairs of segments, and i represents the
difference in index value between each pair of symmetric
body segments in the feature vector.

n = 10 is the number of segments, and m = 2n−1 = 25−
1 = 31 is the number of combinations of generated synthetic
augmentations to V. The number of symmetric pairs is p = 5,
and the difference of symmetric segment pair index value is
i = 5. A generated matrix M is a concatenation of V (1×10)
and S (31× 10) with a total dimension of 32× 10.

The data augmentation method is applied to each of the 40

Algorithm 1 Bilateral symmetry data augmentation method
Input: 1 × n-dimensional vector of V
Output: m × n-dimensional matrix of A

1: count = 1;
2: A = zeros(m, n);
3: for q = 1:1:p do
4: comb = nchoosek(1:1:p, q);
5: for b = 1:1:size(comb, 1) do
6: A(count, :) = V;
7: temp1 = V(comb(b, :));
8: temp2 = V(comb(b, :) + i);
9: A(count, comb(b, :)) = temp2;

10: A(count, comb(b, :) + i) = temp1;
11: count = count + 1;
12: end for
13: end for

videos, where each M represents an augmentation of a single
time series data point. The produced dataset for each video
is concatenation of n M matrices, where n is the number of
initially extracted frames from each video. The re-organized
dataset is represented in the following equation:

D = {{M1,1, · · · ,M1,n} , · · · , {M32,1, · · · ,M32,n}} , (1)

where the length of D is 32. The next step is to scale the
new augmented vector of segment lengths with respect to the
segment lengths from the initial pre-augmented dataset. The
scaling is performed using the following equation:

Sv,scaled =
Sv × L

L0
, (2)

where L0 is the original segment length and L = ∥Sv∥ is the
current augmented segment length. A uniformly distributed
value of random noise between 0 and σL

4 is added to avoid re-
dundancy in each Sv,scaled, where σL is the sample standard
deviation of all the lengths of that particular segment in the
whole augmented D dataset. To obtain the joint coordinate



from Sv,scaled, the following equation is used:[
x y z

]T
new

= S′
v,scaled +

[
x y z

]T
original

, (3)

where S′
v,scaled denotes a scaled and noised vector. The

resulting dataset is concatenated with the original joint
coordinate dataset. The final augmented matrix containing
all the coordinates has a shape of 32× 36, where 32 results
from the 31 variations plus the original variation and 36 is
the number of obtained coordinate components (3 axes × 12
joints).

4) Gait Feature Engineering: Kinematic and spatiotem-
poral parameters are calculated from the extracted joint
coordinates from MediaPipe Pose. The kinematic parameters
are the angles of six joints in the upper body: left and right
shoulders, hips, and knees. The spatiotemporal parameters
associated with ataxic gait are derived from [25], [26].
Table II states the computational formulas for the selected
kinematic and spatiotemporal features. The final dataset1 is
composed of 36 joint coordinates combined with 6 kinematic
and 5 spatiotemporal parameters, making a total of 47
features.

B. Model Training, Validation, and Evaluation

Table III states various tested hyperparameters throughout
different trials of training the LSTM model, and Fig. 3
illustrates a simplified graphical representation of the neural
network’s architecture. The LSTM architecture is developed
using PyTorch framework, and the model is trained on
NVIDIA GeForce RTX 3070 Graphical Processing Unit
(GPU) for computational acceleration.

LSTM trains not on whole time series variables but instead
on divided sequences of data. The sequences are labeled and
fed to the LSTM network for training. The shape of each
sequence is 256 defined time series data points × 47 features.

1The developed dataset for this research can be found at
http://dx.doi.org/10.17632/2vkk2r9tx3.1.

TABLE II
SPATIOTEMPORAL AND KINEMATIC PARAMETERS FOR BOTH DATASETS:
ATAXIC AND NORMAL GAIT. IC IS INITIAL CONTACT AND FC IS FINAL

CONTACT.

Parameter Formula

Base Width [m] |left anklex − right anklex|
Feet Clearance [m] |left ankley − right ankley |
Stride Length [m] |left anklez − right anklez |

Stride Time [s] timeFC − timeIC

Stride Speed [m/s] Stride Length
Stride Time

Shoulder Abduction Angle [rad] arccos
−−−−−−−→upper arm·−−−→torso

∥−−−−−−−→upper arm∥·∥−−−→torso∥

Hip Flexion Angle [rad] arccos
−−−→
torso·

−−−→
thigh

∥−−−→torso∥·∥
−−−→
thigh∥

Knee Flexion Angle [rad] arccos
−−−→
thigh·

−−−−→
shank

∥
−−−→
thigh∥·∥

−−−−→
shank∥

TABLE III
TESTED HYPERPARAMETERS THROUGHOUT MODEL VALIDATION AND

OPTIMIZATION STAGES. SELECTED HYPERPARAMETERS LEADING TO

SATISFACTORY RESULTS ARE IN BOLD.

Hyperparameter Tested Values

Epochs 120, 150, 160, 200, 250
Batch Size 64, 128

Layers 3, 4
Hidden Units 128, 256

Optimizer Adam
Learning Rate 0.001, 0.0001
Dropout Rate 0, 0.5, 0.75
Weight Decay 0, 0.00001

Fig. 3. Selected LSTM neural network visualization. L represents LSTM
cells, parentheses superscripts represent hidden layer index, and subscripts
represent the index of each unit within the layer.

k-fold cross-validation is performed to determine the best
configuration of training and testing splits. The validation
method implemented is k-fold cross-validation, which is
described by the following representation [11]:

A∗ ∈ argmin
A∈A

1

k

k∑
i=1

L
(
A,D(i)

train ′D(i)
val

)
. (4)

The whole testing set is used as the validation set. The
k-fold cross-validation model determines the model A∗ ∈ A
with the optimized composition of training and validation
data. D is the dataset, one each for training and validation,
and L is the cross entropy loss function. The number of folds
considered is k = 5. The allocated samples are 32 videos for
training and 8 videos for validation evenly split among ataxic
and normal gait classes.

Evaluation methods of the LSTM classifier are the confu-
sion matrix and three metrics that are derived from it, which
are recall, precision, and accuracy [27].

IV. RESULTS AND DISCUSSION

To validate the effect of data augmentation on model
performance, the pre-augmented dataset was used for training
using the same hyperparameters and the training/validation
split as the first fold of cross-validation. In fold 1, each
person is generating data for the two classes, and both ataxic
and normal gait datasets are included in the training and
validation sets, testing the hypothesis that the classification



performance shall be better than other randomly generated
training folds. Folds 2 to 5 were developed by random
generation of dataset splits.

Fig. 4 shows the confusion matrices for the pre-
augmentation and the five-fold cross-validation stages. To
interpret comparable results between all five folds, initial
hyperparameters were set and maintained constant. The
confusion matrix for the pre-augmentation stage in Fig. 4a
indicates that the model under fitted the smaller dataset.
Moreover, the model tended to classify validation examples
as ataxic gait more than as normal gait, which is evident from
the normal gait class’s lower precision and recall results.
In comparison, the classification results of the five folds
showcase higher accuracy results, supporting the hypothesis
that data augmentation improves performance drastically.

Folds 1 and 4 resulted in the best classification results
among all the folds. This validates the hypothesis of the
positive effect of including the same person’s ataxic and
normal gait datasets in the training set, which was the
case for fold 1. However, fold 4, as shown in Fig. 4e,
still achieved a higher and maximum accuracy of 100%.
Moreover, folds 2, 3, and 5 achieved highly accurate results,
indicating the suitability of the dataset for training LSTM
networks. Even though fold 4 led to maximum classification
results, hyperparameter tuning was implemented on the best-
performing fold since the initial hyperparameters did not
include regularization, which could hypothetically lead to
poor performance on unseen data due to high model com-
plexity. Figs. 5 and 6 show the validation accuracy and loss
graphs with respect to training epochs and the confusion
matrix of the selected LSTM model with the optimized
hyperparameters, respectively. Fold 4 was selected as the
model to be optimized because the model achieved the best
accuracy in the cross-validation stage. To evaluate different
hyperparameters on the classification results, four iterations
of hyperparameter tunings were conducted to obtain highly
performing results with the inclusion of regularization terms

(a) Pre-augmentation (b) Fold 1 (c) Fold 2

(d) Fold 3 (e) Fold 4 (f) Fold 5

Fig. 4. Confusion matrices of the pre-augmentation and five-fold cross-
validation stages.

Fig. 5. Validation accuracy and loss curves of the selected LSTM model.

Fig. 6. Confusion matrix of the selected LSTM model.

in the LSTM network architecture.
The hyperparameters stated in Table III were experimented

during the four optimization iterations, and the selected
hyperparameters for the optimal model are highlighted in
bold. The validation accuracy curve in Fig. 5 shows stability
and conversion to a very high accuracy rate. The smoothed
loss curve in Fig. 5, however, shows slightly unstable perfor-
mance, especially during the first 40 epochs. This behavior
is expected in neural network performance on large datasets.
The actual minimum cross entropy loss was reached at the
108th epoch from 120 total number of epochs with a value
of 0.0077.

The confusion matrix in Fig. 6 shows very high accuracy
of 99.8% on the testing set. Results from precision and
falsely classified sequences indicate that the model’s bias
is slightly leaning towards ataxic gait. This result could be
due to the larger portion of ataxic gait sequences in the
training set. However, the selected model misclassified three
ataxic gait sequences as normal gait types, which is more
than the single misclassification of the normal gait sequence.
Generally, bias towards one class can be minimized by
balancing the dataset size among all classes.

V. CONCLUSION

In this research, a human pose estimation-based classi-
fication framework using LSTM neural network that can



diagnose cerebellar ataxic and normal gait is proposed. The
dataset for training the LSTM network is developed by
acquiring videos of people imitating both ataxic and normal
gait patterns and applying data augmentation and feature
engineering techniques. The proposed model achieved gait
type prediction accuracy of 99.8%. Emerging machine learn-
ing solutions can assist patients possessing neurodegener-
ative diseases to experience high-performing and reliable
healthcare systems that operate efficiently and remotely,
especially when physical diagnosis is infeasible. Moreover,
the development of a human motion dataset for cerebellar
ataxic gait and a very highly accurate disease diagnosis
classifier based on such dataset is the major contribution of
this research. Based on the authors’ knowledge, there is no
ataxic gait dataset based on pose estimation in the literature,
which its creation advocates this research’s novelty.

Challenges encountered in this research are the uncertainty
of the model’s performance on real-world data and occlusion
during pose detection. Future implementations to resolve
these limitations include the acquisition of videos consisting
of varying specifications such as camera angle, resolution,
and gait pace to produce a more generalized model and mini-
mize occlusion. Further testing of a variety of neural network
types and architectures, e.g., CNN, could yield more robust
models. Furthermore, techniques such as domain adaptation
could provide significantly enhanced performances when
testing the model on unseen data from varying distributions.
Future applications of this research include the deployment
of the trained LSTM model on a mobile application that can
be utilized by clinical physicians with their assigned patients
virtually.
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