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Abstract— Human motion retargeting to humanoid robots
(i.e., transferring motion data to robots for human imitation)
is a challenging process with many potential real-work appli-
cations. However, current state-of-the-art frameworks present
practical limitations, such as the requirement of camera cal-
ibration and the implementation of expensive equipment for
motion capture. Therefore, we propose a novel framework for
motion retargeting based on a single-view camera and human
pose estimation. Unlike previous works, our framework is cost
and computationally efficient, and it is applicable both on pre-
recorded uncalibrated videos and web-camera live streams. The
framework is composed of three modules: 1) 2D coordinate
extraction from the integrated Google BlazePose, 2) 3D model-
ing by depth estimation using a geometrical algorithm, and 3)
human joint angles computation and input process to Pepper
robot. Pepper’s imitation accuracy is evaluated qualitatively
by direct motion similarity observation and quantitatively by
comparison between output and input motion data to observe
the effect of Pepper’s physical limitations. Results suggest
that our proposed framework is able to reproduce human-like
motion sequences, however with some limitations due to the
hardware.

I. INTRODUCTION

Nowadays, humanoid robots play an important role in
numerous applications which involve social and assistive in-
teractions with humans. Such applications include education
[1], therapy [2], public talk interaction based on imitation
of human body language [3], and teleoperation for human
assistance [4]. Therefore, human-robot interaction (HRI) is
a major research pursue for improving and increasing the
usability of humanoid robots so that they become a concrete
interacting factor in human society. For humanoid robots to
be efficiently optimized in interaction with humans, these
robots must have some human features. Such resemblance
includes the ability of humanoid robots to mimic human
motion effectively. This can be achieved when human motion
is transferred to humanoid robots directly, whether based
on a real-time process or a pre-defined motion sequence.
This is defined as human motion retargeting. Generally, the
key methodology for motion retargeting is human motion
capture, which is the modeling and analysis of human motion
sequences based on motion data. Captured data is then
transferred to the robot for human motion imitation.
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Motion capture technologies that are widely in use are
either marker-based (e.g., motion capture suits based on
attached reflective markers) or marker-less (e.g., solutions
where the human subject’s motion is captured by a camera
or a depth sensor). There are other types of marker-less
technologies, such as wearable inertial measurement unit
(IMU) motion capture systems. Integrating these various
technologies in robotics research has been a major challenge
considering their limitations [5]. Therefore, novel alternatives
based on deep neural networks, which are explored in this
paper, have been proposed to assist in the development of
human pose estimation frameworks processed on images and
videos without requiring physical measurement tools.

In this paper, our aim is to achieve upper body motion
retargeting to humanoid robots based on a novel real-time
human pose estimation library processed on uncalibrated
single-view videos instead of using complex and costly
marker-based or sensor-based solutions. Therefore, we val-
idate the suitability of Google MediaPipe Pose (BlazePose)
[6], [7] in a motion retargeting scenario. Our proposed frame-
work is composed of three software modules or processes:
1) extraction of 2D body landmark coordinates from the
integrated BlazePose, 2) depth estimation for 3D modeling
using a geometrical algorithm, and 3) human joint angles
computation by linear algebra and trigonometry and the data
input process to the robot. Additionally, the joint angles out-
put are extracted from the real robot’s sensors for comparison
purpose. The experiments were conducted on the Pepper
robot [8], as it is an open-source and popular social humanoid
robot that has human-like motion capabilities. Experimenting
on such humanoid robot assisted to highlight the similarity of
its imitated motion compared to the captured human motion.

The rest of the paper is organized as follows. Section II ex-
plains some related work in literature and a summary of our
contribution. Section III describes implemented methods and
algorithms. Section IV describes the experimental procedures
conducted and the tools used in the experiment. Section V
shows image results of the imitated motion, an evaluation of
the output results from the real Pepper robot, and a discussion
on the main points observed. Section VI states the conclusion
of the research and the future improvements and work to be
considered.

II. RELATED WORK

A. Video-based Marker-less Motion Capture Technology

There has been a wide development of marker-less so-
lutions for motion analysis that have been useful tools in
research [9]. For instance, Microsoft Kinect is a depth
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camera that can be used for kinematic analysis in a non-
laboratory environment, unlike marker-based motion capture
suits, which require extensive setup procedures and expen-
sive equipment for data collection confined to a laboratory
workspace [10]. Even though Kinect is a portable and
cost-efficient alternative to motion capture suits [11], it is
mostly applicable only in indoor environments due to its
vulnerability to direct sunlight [12].

OpenPose [13] is a deep learning-based alternative frame-
work for multi-person 2D human pose estimation. Re-
searchers have used it to develop marker-less 3D human
motion capture solutions [14]. However, OpenPose is of-
ten considered computationally inefficient [15] and requires
high-performance computational resources, such as high-
end graphical processing units (GPUs), to enable real-time
human body pose detection. Moreover, using single camera
systems, the OpenPose model can only extract 2D kinematic
data from humans. OpenPose also provides a 3D keypoint
reconstruction module [16] but with the use of a multiple-
camera system and the calibration of each camera. This
makes the use of pre-recorded videos infeasible where cam-
era parameters are unknown. Therefore, there have been
several pose estimation solutions developed as an alternative
to OpenPose to propose a more efficient framework [15],
[17]. A very recent alternative released in 2020 is BlazePose,
which has a faster performance rate on low powerful process-
ing units compared to OpenPose [7]. However, BlazePose
can only detect a single person in the scene. To the best of
the authors knowledge, BlazePose have been not used and
evaluated before for enabling motion retargeting to humanoid
robots. Therefore, achieving this is a main objective in our
work.

B. 3D Human Pose Reconstruction

3D pose reconstruction of the human body from marker-
less motion capture data is a novel approach to propose
efficient solutions to improvise on the existing 2D pose
estimation frameworks. Reconstruction of the human pose
from uncalibrated videos for producing animation sequences
was proposed in [18]. Similarly, Yiannakides et al. [19]
used a monocular RGB camera to develop a method for
3D pose and motion reconstruction. Wang et al. [20], on
the other hand, proposed a generalized 3D model complying
with the modeled human subject while considering the target
robot configurations of stability and joints without predefined
joint mapping. The authors used Microsoft Kinect on the
human subject to capture the RGBD sequences used in their
human-robot (HUMROB) model. However, our framework
is integrating pose estimation as most 3D reconstruction
algorithms require a complex process for implementation.
We used a derived method similar to the most suitable one
in [18], although we experimented it on motion retargeting
instead of animations.

C. Motion Optimization

In motion retargeting research, some methods were pro-
posed that aim to optimize the motion of robots, either

by relaxing constraints to narrow the gap of motion lim-
itations between humans and robots or by preserving hu-
man motion features. One method of optimizing motion
is constrained optimization, which was used to minimize
pose and end-effector errors [21] and generate human-like
continuous motion [22]. Geometric parameter identification,
motion planning, and inverse kinematics (IK) solution were
introduced in [23] based on quantitative analysis to imitate
accurate motion while adapting with the variety of human
subject body features. Kaplish and Yamane [24] focused
on teleoperation based on physical human-robot interaction
(pHRI) through a sensor-based controller that detects the
contact forces and implements an optimization technique to
minimize the discrepancy between the contact states of the
robot and the human operator. The above-mentioned solu-
tions implemented sensor-based technologies for kinematic
or dynamic data extraction. This differs from our proposed
framework which is based on an unwearable solution, and
these optimization algorithms have not been tested on motion
data from pose estimation libraries.

D. Inverse Kinematics

IK is commonly used in robot and human motion modeling
by extracting joint angles from the end-effector position and
orientation. Rapetti et al. [25] developed motion tracking al-
gorithms based on dynamical IK and tested their performance
through a human-robot motion retargeting scenario using
Xsens motion capture suit. Darvish et al. [26] proposed a
generalized framework for teleoperation of several humanoid
robots using whole-body controllers. They implemented hu-
man subject measures as inputs to an IK model integrated
with an optimization scheme to obtain the suitable robot in-
put parameters for achieving whole-body motion retargeting.
Even though it is an effective method for motion analysis,
IK was not suitable for our approach as it requires the 3D
orientation of the end-effector, which is difficult to extract
from 2D pose estimation.

E. Training Robots to Imitate Humans

Various machine learning algorithms were developed to
train robots to emulate human motion sequences. Generative
Adversarial Networks (GAN) trained from motion capture
data were implemented in [27] using Kinect and in [28]
using a calibrated RGB camera. Martin and Moutarde [29]
designed a controller that makes a robotic manipulator mimic
a human subject through the implementation of Human Mesh
Recovery (HMR), which is a trained model that estimates a
3D mesh model and camera configuration of a human from
a single-view image. However, they concluded that HMR
was not precise in detecting joint positions in their approach.
Hwang and Liao [30] used stable movement classification by
support vector machine in motion imitation by a humanoid
robot. However, these methods require pre-training of data
for implementation, which can reduce time efficiency for our
approach.
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F. Contribution

In this research, our contribution is summarized as follows:
1) Integration and evaluation of BlazePose for enabling

motion retargeting to humanoid robots as it was not
implemented in robotics research before.

2) Development of a cost and computationally efficient
motion retargeting framework that is applicable, unlike
previous works, in indoor, outdoor, and non-laboratory
environments and operational on lower-end devices
other than computers (e.g., mobile devices) [7].

3) Experimental validation of the proposed framework on
humanoid robots using pre-recorded videos without
the requirement of real-time physical presence of the
human subject.

III. METHODOLOGY

A. 2D Coordinates of Body Landmarks

BlazePose is composed of a model of 33 landmarks,
representing the whole body of a human including the facial
landmarks. In the proposed algorithm, only the upper body
and nose landmarks are used as highlighted in Fig. 1 since
Pepper is not a bipedal robot.

The output of BlazePose landmark coordinates is com-
posed of x and y coordinates normalized to a ratio of 0
to 1 multiplied by the image width and height respectively
[31], which form the video resolution in pixels. The z
coordinate relative to the camera frame is recently developed
in BlazePose GHUM 3D model [31], but it was only released
at the time of writing this paper. Therefore, an effective
algorithm is utilized for estimating the depth coordinate of
the detected landmarks instead.

B. Depth Estimation

To estimate the depth in pixels between two (x, y) coor-
dinates for two landmarks, certain features from an initial
pose template of the human in the video must be extracted
first to be used as a reference. The input video of human
motion must start with this initial pose, where the human is
at resting position with all the arms stretched, torso straight,
and the face looking directly to the camera as shown from
the human initial pose in the image in Fig. 2. As the real arm
segment lengths of the human in the video are unknown, the
original length of each segment with reference to BlazePose
coordinate system is obtained. Each original arm segment’s
length, l, is used in this equation:

dz =
√
l2 − ((x1 − x2)2 + (y1 − y2)2), (1)

which is derived from the equation presented in [32] and
validated through related work [18]. dz in (1) represents
the pixel depth between (x1, y1) and (x2, y2), which are
two coordinates for two different landmarks. The scaling
factor was set to s = 1 as a scaled orthographic projection
is not assumed in this case. There is only one plane of
reference, which is the frontal plane of human motion. When
the arm segments move, their lengths change according to
the orthographic projection of the person facing the camera
as can be shown in the example of Fig. 3a.

Fig. 1: Extracted Landmarks used in our algorithm from
BlazePose landmark library [31].

Fig. 2: The architecture of our proposed framework for
motion retargeting to Pepper. px,y represents the 2D positions
of the body landmarks from BlazePose, px,y,z represents the
3D coordinates including the depth parameter calculated. qi
and ti are the input joint angles and motion time frame
vectors respectively, while qo and to are the output ones.

C. Calculation of Joint Angles

The notations S, E, H, and HP represent the shoulder,
elbow, head, and hip respectively. SE stands for shoulder to
elbow, or upper arm, and EW stands for elbow to wrist, or
lower arm. The roll, pitch, and yaw angles are represented
by φ, θ, and ψ respectively. These notations are used in the
following equations and symbols for body segment and joint
angle representations. The angles are all in radians (rad).

1) Arms: There are four degrees of freedom (DoFs) for
each arm of Pepper: shoulder roll, shoulder pitch, elbow
roll, and elbow yaw. In order to model the motion, a vector
model of the human arm with three of those angles is
represented (see Fig. 3b). The fourth angle, elbow yaw,
cannot be calculated as the hand orientation in 3D space
from BlazePose is unknown. Instead, its value is estimated
based on the predicted hand pose at the moment the human
performs a specific movement.

The upper arm vector illustrated in Fig. 3b, SE, and its
projection on the YZ plane are the two vectors that the angle
between them will be the shoulder roll, φS . Upper arm YZ
projection is represented by:

SEY Z =
[
0 ySE zSE

]T
, (2)

while the shoulder roll is calculated using (2) with this
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(a) (b)

Fig. 3: (a) A representation example of the projection of the
human model by BlazePose, while the human is moving the
left arm; (b) A model representing the shoulder roll (φS),
shoulder pitch (θS), and elbow roll (φE) of the human arm
in 3D space to be corresponded with Pepper joint angles.

(a) Supination (b) Neutral (c) Pronation

Fig. 4: The three hand pose conditions which correspond to
(a) ±π2 , (b) 0, and (c) ±π2 rad for the elbow yaw angle.

equation:

φS = arccos
SE · SEY Z∥∥SE∥∥ · ∥∥SEY Z∥∥ . (3)

Upper arm XZ projection is modeled as:

SEXZ =
[
xSE 0 zSE

]T
. (4)

Equation (4) is then used with SE to compute the shoulder
pitch, θS , by:

θS = arccos
SE · SEXZ∥∥SE∥∥ · ∥∥SEXZ∥∥ . (5)

The shoulder pitch range is assumed to be −π2 to π
2 rad

instead of the indicated range in Pepper’s joints documenta-
tion [33] as it is not possible to predict the arm’s movement
backward in the negative Z sagittal plane. SE and the lower
arm vector, EW , are used to calculate the elbow roll, φS ,
using:

φE = arccos
SE · EW∥∥SE∥∥ · ∥∥EW∥∥ . (6)

Equations (3), (5), and (6) are applicable for both left and
right arms’ joint angle calculations, with consideration of
the respective sign conventions with reference to Pepper’s
motion coordinate frame [33].

The elbow yaw angles, ψE , are only assigned as either
π
2 , 0, or −π2 rad depending on the sign conventions of
Pepper coordinate frame. As in Fig. 4, supination, pronation,
and neutral are the three types of poses that we refer to
for assigning ψE . For right elbow yaw, supination matches
ψE = π

2 rad when the right wrist y coordinate is higher
in position, or less in magnitude referring to the coordinate

(a) Head Yaw (b) Head Pitch (c) Hip Roll and Hip
Pitch

Fig. 5: Head and hip motion representations. The sign
conventions (+ or -) show the required sign of the estimated
respective angles. δY and δP are the head displacements
proportional to head yaw and pitch angles respectively. lT
is the torso height, and lW is the waist width.

frame in Fig. 3a, than the right elbow y coordinate by a
relatively significant difference as in Fig. 4a. Pronation, on
the other hand, matches ψE = −π2 rad when the right wrist
and right elbow relative y coordinate condition is vice-versa,
where the right wrist is lower than the right elbow (see
Fig. 4c). The same goes for right elbow yaw, however with
supination matching ψE = −π2 rad and pronation matching
ψE = π

2 rad. The neutral pose in Fig. 4b, matches 0 rad
in both right and left elbow yaw angles when the wrist and
elbow are nearly on the same horizontal line with almost
matching y coordinates.

2) Head: The head’s joint angles to be estimated are the
head yaw and pitch. For head yaw, θHY , even though it has
a range of -2.0857 to 2.0857 rad, we assume that its range of
motion is −π2 to π

2 rad so that human-like head movements
are generated as humans usually do not have such extreme
range of motion. We assume the following relation:

ψH ∝ δY , (7)

in which the x position of the nose landmark with respect
to the initial pose reference template defines its left or
right horizontal displacement, δY in (7), with respect to the
shoulders’ x coordinates as can be seen in Fig. 5a. Similarly,
the head pitch, θH , is represented by:

θH ∝ δP , (8)

where δP in (8) is the vertical up or down displacement
of the nose’s y coordinate with respect to the shoulders’
y coordinates (see Fig. 5b). θH range of motion, -0.7068
to 0.6371 rad, is smaller than that of ψH , which is the
usual case for human head pitch movement as well. The
sign conventions of ψH and θH are represented by the signs
of δY in Fig. 5a and δP in Fig. 5b respectively.

3) Hip: The hip joint angles are the hip roll, φHP , and
hip pitch, θHP . φHP is represented by the tilt angle of
the waist width segment, lW , shown in Fig. 5c with sign
conventions and a range of motion of -0.5149 to 0.5149 rad.
It is calculated by the following equation:

φHP = arccos
lW

′

lW
, (9)
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TABLE I: Pepper joint angles with a description of their respective motion, the axis which each rotates around, their filtered
range of motion with reference to Pepper joints documentation [33], and the maximum angular velocities achieved by the
joint actuators obtained from Pepper’s system log after experimentation on the real robot. X ′, Y ′, or Z ′ represents the new
frame axis that the rotation is around when Pepper moves and changes its initial position.

Joint Angle Motion Rotation Axis Range (rad) Max. Angular Velocity (rad/s)

LShoulderPitch Left shoulder joint front and back X -1.5708 to 1.5708 7.340
LShoulderRoll Left shoulder joint right and left Y 0.0087 to 1.5620 9.228
LElbowRoll Left elbow joint flexion and extension Y ′ -1.5620 to -0.0087 9.228
LElbowYaw Left shoulder joint twist Z′ -1.5708 to 1.5708 7.340
RShoulderPitch Right shoulder joint front and back X -1.5708 to 1.5708 7.340
RShoulderRoll Right shoulder joint right and left Y 0.0087 to 1.5620 9.228
RElbowRoll Right elbow joint flexion and extension Y ′ -1.5620 to -0.0087 9.228
RElbowYaw Right shoulder joint twist Z′ -1.5708 to 1.5708 7.340
HeadYaw Head joint twist Y -1.5708 to 1.5708 7.340
HeadPitch Head joint front and back X -0.7068 to 0.6371 9.228
HipPitch Hip joint front and back X -1.0385 to 1.0385 2.933
HipRoll Hip joint right and left Z -0.5149 to 0.5149 2.270

where lW
′ in (9) is the changed lW during motion. θHP

in our case is assumed always to be in positive direction
only, or leaning forward following the sign conventions of
Pepper since we cannot predict the direction of hip pitch
movement. In addition, humans usually do not tend to lean
backward while moving naturally. Therefore, θHP range is
0 to 1.0385 rad. θHP is then represented by the tilt angle of
the torso height segment, lT , or the segment representing the
distance between the shoulders and the hip, in the following
equation:

θHP = arccos
lT

′

lT
, (10)

in which lT ′ in (10) is the changed lT .

D. Robot Input

The sets of calculated joint angles are named as in Table I,
with each of them represented as:

q =
[
q1 q2 . . . qn

]T
. (11)

Since the length of each q vector is large, each is scaled
by a set scaling factor, which is determined by trial and
error applicable for any input video. The input data size to
the robot is reduced to avoid any errors while executing the
motion retargeting process. Such errors include commanding
kinematic data that cause the input joint angular velocity
to Pepper to exceed the maximum angular velocity that
the robot can achieve by its actuators (see Table I). This
can occur if there is a small change in time between two
commanded joint angle inputs. Furthermore, the angles are
filtered based on their range of motion shown in Table I. To
correspond the time frame of captured motion to the robot
motion one, a time series vector of the same length as q,
expressed in seconds, is represented as:

t =
[
t1 t2 . . . tn

]T
, (12)

where n in (11) and (12) is the scaled number of extracted
frames from BlazePose since the t vector is also scaled by

the same scaling factor as q. All joint angle vectors and
their corresponding time series ones are combined into a
single data set, which is the input to the robot as can be
summarized in Fig. 2.

IV. EXPERIMENT

We implemented BlazePose Python Application Program-
ming Interface (API) running on a PC with Intel Core i7-
8550U central processing unit (CPU) @1.80 GHz, NVIDIA
GeForce MX150 GPU, and 16 GB of random access memory
(RAM). The model is operating with an output of more than
20 frames per second (FPS), and it is using TensorFlow Lite
integrated with XNNPACK library.

For the input to BlazePose, we utilized a suitable video
from YouTube1 as the upper body is fully appearing in the
scene and the human subject is front facing the camera
without rotation. The projection of the detected segment
annotations is accurate, and occlusions are minimal. This
allows us to use our proposed algorithm for estimating depth
coordinates since the human subject starts the motion with
the initial pose that is shown in Fig. 2. The human was
performing multiple variations of arm movements and head
twists, either slow and steady or fast and complex, and this
helped us to experiment and evaluate a variety of generated
robot movements.

In order to retarget the generated data set of joint an-
gles and corresponding time series, we used the method
angleInterpolation from the Joint Control API from NAOqi
2.5 Python Software Development Kit (SDK) [33]. The
angleInterpolation method receives the joint angles and the
corresponding time series vectors as inputs in order to com-
mand the robot to move in a set time frame. We connected
the robot with Choregraphe 2.5 [34], which also includes a
real-time simulation of Pepper’s motion. For extracting the
actual joint angles from the sensor output of the real robot,

1We used this video of a person performing an exercise session:
https://youtu.be/MBh14pJ6MU0
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Fig. 6: Pepper mimics different movements from the exercise video.
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Fig. 7: The output joint angle data (red) from the sensors of Pepper compared with the filtered human motion data extracted
from BlazePose (blue), which is the input to the robot controller for two types of exercises: Exercise 1 (slow movement)
and Exercise 2 (fast movement). r represents the correlation coefficient of the two signals.

we integrated the Node Primitives (NEP) framework [35]
in which we created a subscriber based on the getAngles
method in the Joint Control API. The subscriber operates in
real-time while the angleInterpolation method (the publisher)
is processing and the robot is moving. A new output data set
composed of joint angles and the executed time series of
motion is generated, and we compared it with our input data
set.

V. RESULTS & DISCUSSION

The result analysis applies sample data of 60 seconds of
the original video for enhanced visualization. The first 22
seconds (Exercise 1) contain mainly slow and steady arm
movements, and the remaining 38 seconds (Exercise 2) are
faster and more complex exercise movements. Various head
and hip movements are embedded in all exercises.

For performance evaluation of the whole proposed frame-
work, we only consider evaluating the second and third
framework components, as the first component’s evaluation

of BlazePose 2D landmark detection is performed in [7] and
indicates that the 2D pose estimation is accurate.

Our major framework evaluation, namely of the third
framework component, of the performed motion by Pepper is
divided into two parts: 1) qualitative analysis based on direct
observation of the motion sequences and 2) quantitative
analysis based on the comparison between the input joint
angle data to the robot’s system and the output joint angle
data from the real robot’s sensors using the experimental
setup described in Section IV.

We can conclude from the observed motion that Pepper
is able to mimic the movements of the arms, head, and hips
in correspondence to the performed motion in the video (see
Fig. 6). The robot can correctly imitate the arm orientations
of the flexion and extension as well as the abduction and
adduction movements, and approximately imitate the head
yaw and pitch and hip roll and pitch movements in dif-
ferent movement scenarios. However, the minor noisy or
inaccurate detections and occlusions of the body landmarks
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TABLE II: The mean absolute error between the predicted
and actual joint angles of the robot shown in Fig. 7 during
Exercise 1 and Exercise 2.

Joint Angle Mean Absolute Error (rad)

Exercise 1 Exercise 2
LShoulderPitch 0.21 0.08
LShoulderRoll 0.18 0.23
LElbowRoll 0.09 0.64
LElbowYaw 0.80 0.23
RShoulderPitch 0.22 0.07
RShoulderRoll 0.19 0.24
RElbowRoll 0.12 0.64
RElbowYaw 0.80 0.33
HeadYaw 0.04 0.13
HeadPitch 0.04 0.04
HipPitch 0.06 0.01
HipRoll 0.01 0.02

in BlazePose, especially during fast movements, affect the
accuracy of the calculated joint angles, specifically for arm
movements. Thus, there are some inaccuracies in performing
fast and complex movements by Pepper. For example, the
supination and pronation movements, since the elbow yaw
for both arms is an estimated value, are correctly performed
but only in naturally performed steady movements, where
the human does not twist the arms complexly.

During Exercise 1, the RShoulderRoll and LShoulderRoll
subplots in Fig. 7 show high correlation between the pre-
dicted and actual movements (see Fig. 7), resulting in less
error than in Exercise 2 (see Table II). It is also shown that in
Exercise 2, the shoulder roll and elbow roll subplots display
the actual robot movement (red) to be of lower frequency
between 23 and 60 seconds (i.e., the robot is not able to
maintain the same rapid change in joint angular motion in
the common time frame as was commanded to it) compared
to the movement in Exercise 1. The larger error in Exercise
2 for RElbowRoll and LElbowRoll in Table II also supports
this hypothesis. In the indicated joint angles of arms, a lower
frequency of motion is observed due to the friction and
physical joint and actuator limitations of Pepper. The robot’s
limitations are also the cause of errors in various movements
for both exercises in all other measured joint angles (see
Table II). The discussed results can be validated by exper-
imenting with the framework’s open-source repository2 on
the real Pepper robot. Moreover, a video3 of imitation by
Pepper is uploaded for further support of the framework’s
performance evaluation.

For evaluation of the second framework component,
BlazePose GHUM 3D model’s depth component (z coordi-
nate) is compared with the depth value time series obtained
by the algorithm in Section III-B, based on our model’s
reference frame. The results are shown in Fig. 8. The GHUM
3D model developed by Google Research, which the novel
BlazePose model is based on, is presented and evaluated in

2The source code of our framework on GitHub:
https://github.com/GVLabRobotics/pepper-blazepose

3Pepper in Choregraphe simulation imitates gestures from another random
video: https://youtu.be/BxJbxjFeQko
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Fig. 8: Comparison between our calculated depth (z) coordi-
nate of the elbows and wrists (blue) and the extracted values
from BlazePose GHUM 3D model (orange) for Exercise 1
and Exercise 2.

[36]. It is observed that the elbows’ and wrists’ depth changes
in BlazePose GHUM 3D model’s data are larger, specifically
in Exercise 1, compared to our calculated depth values.
However, Exercise 1 does not show such large changes
in elbow and wrist depth movements when observing the
original video. Moreover, our depth estimation results were
observed to produce correct imitations by the robot as was
observed in the third framework component evaluation. The
discrepancy between the two methods’ results can be the
cause of GHUM 3D model’s baseline of obtaining depth
values by synthetic data fitting to the 2D pose annotation
[36], which can lead to value prediction inaccuracy. Cur-
rently, BlazePose team is working on improving the accuracy
of z coordinate estimation in BlazePose GHUM 3D model
[31].

VI. CONCLUSION & FUTURE WORK

In this paper, we presented a human-to-humanoid robot
motion retargeting framework using BlazePose model on
uncalibrated videos of human motion. This proposed novel
work leads to a further step in human-robot interaction
(HRI) research, where pose estimation solutions can be
implemented to tackle the limitations of sensor-based and
marker-based motion capture technologies. Efficient motion
retargeting solutions help advance more real-life applications
in which humanoid robots are more engaged with humans.
Because of its computational efficiency, our framework can
be integrated with robotic vision systems. Moreover, our
framework is open-source and can assist people in education,
research, and other fields to expand human motion interactive
applications using simple video recordings. However, it is
optimal for use only for humanoid robots with a close
number of DoFs to those of humans, and its dependency on
the initial pose input template constrains its functionality to
single-view videos with a specific orientation. Moreover, in
BlazePose, direct osculation on the detected human body by
other people or other objects in the scene sometimes causes
inaccurate pose detection, which limits our framework’s
performance in such scenarios.

Further improvements based on motion optimization can
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be introduced in future research in order to eliminate noise
in motion and to make it more human-like. The novel
BlazePose GHUM 3D model can be tested further for motion
retargeting after its improvement and compared with our
approach as well as other 3D motion capture solutions.
Newer pose estimation solutions that can detect the position
and orientation of both hands and arms, such as MediaPipe
Holistic [37], can be tested to apply IK for computing joint
angles. Moreover, we will work to implement online real-
time video teleoperation of humanoid robots using the ex-
perimented NEP framework [35] integrated with our model.
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[18] U. Güdükbay, I. Demir, and Y. Dedeoğlu, “Motion capture and human
pose reconstruction from a single-view video sequence,” Digital Signal
Processing, vol. 23, no. 5, pp. 1441–1450, 2013.

[19] A. Yiannakides, A. Aristidou, and Y. Chrysanthou, “Real-time 3D
human pose and motion reconstruction from monocular RGB videos,”
Computer Animation and Virtual Worlds, vol. 30, no. 9, 2019.

[20] S. Wang, X. Zuo, R. Wang, and R. Yang, “A Generative Human-Robot
Motion Retargeting Approach Using a Single RGBD Sensor,” IEEE
Access, vol. 7, pp. 51 499–51 512, 2019.

[21] T. Tosun, R. Mead, and R. Stengel, “A General Method for Kinematic
Retargeting: Adapting Poses Between Humans and Robots,” in ASME
2014 International Mechanical Engineering Congress and Exposition,
Montreal, Quebec, Canada, 2014.

[22] M. J. Gielniak, C. K. Liu, and A. L. Thomaz, “Generating human-like
motion for robots,” The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1275–1301, 2013.

[23] K. Ayusawa and E. Yoshida, “Motion Retargeting for Humanoid
Robots Based on Simultaneous Morphing Parameter Identification and
Motion Optimization,” IEEE Transactions on Robotics, vol. 33, no. 6,
pp. 1343–1357, 2017.

[24] A. Kaplish and K. Yamane, “Motion Retargeting and Control for
Teleoperated Physical Human-Robot Interaction,” in 2019 IEEE-RAS
19th International Conference on Humanoid Robots (Humanoids),
Toronto, ON, Canada, 2019, pp. 723–730.

[25] L. Rapetti et al., “Model-Based Real-Time Motion Tracking Using
Dynamical Inverse Kinematics,” Algorithms, vol. 13, no. 10, p. 266,
2020.

[26] K. Darvish et al., “Whole-Body Geometric Retargeting for Humanoid
Robots,” in 2019 IEEE-RAS 19th International Conference on Hu-
manoid Robots (Humanoids), Toronto, ON, Canada, 2019, pp. 679–
686.

[27] U. Zabala, I. Rodriguez, J. M. Martı́nez-Otzeta, and E. Lazkano,
“Learning to gesticulate by observation using a deep generative
approach,” in International Conference on Social Robotics, Madrid,
Spain, 2019, pp. 666–675.

[28] L. Gui, K. Zhang, Y. Wang, X. Liang, J. M. F. Moura, and M. Veloso,
“Teaching Robots to Predict Human Motion,” in 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
Madrid, Spain, 2018, pp. 562–567.

[29] J. B. Martin and F. Moutarde, “Real-time gestural control of robot
manipulator through Deep Learning human-pose inference,” in In-
ternational Conference on Computer Vision Systems, Thessaloniki,
Greece, 2019, pp. 565–572.

[30] C. Hwang and G. Liao, “Real-Time Pose Imitation by Mid-Size Hu-
manoid Robot With Servo-Cradle-Head RGB-D Vision System,” IEEE
Transactions on Systems, Man, and Cybernetics: Systems, vol. 49,
no. 1, pp. 181–191, 2019.

[31] “MediaPipe Pose,” Accessed: Apr. 3, 2021. [Online]. Available:
https://google.github.io/mediapipe/solutions/pose.html

[32] C. J. Taylor, “Reconstruction of articulated objects from point cor-
respondences in a single uncalibrated image,” in Proceedings IEEE
Conference on Computer Vision and Pattern Recognition. CVPR 2000
(Cat. No.PR00662), Hilton Head, SC, USA, 2000, pp. 677–684 vol.
1.

[33] “Pepper (NAOqi 2.5),” Accessed: Mar. 20, 2021. [Online]. Available:
https://developer.softbankrobotics.com/pepper-naoqi-25

[34] E. Pot, J. Monceaux, R. Gelin, and B. Maisonnier, “Choregraphe: a
graphical tool for humanoid robot programming,” in RO-MAN 2009
- The 18th IEEE International Symposium on Robot and Human
Interactive Communication, Toyama, Japan, 2009, pp. 46–51.

[35] E. Coronado and G. Venture, “Towards IoT-Aided Human–Robot
Interaction Using NEP and ROS: A Platform-Independent, Accessible
and Distributed Approach,” Sensors, vol. 20, no. 5, p. 1500, 2020.

[36] X. Hongyi, E. G. Bazavan, A. Zanfir, W. T. Freeman, R. Sukthankar,
and C. Sminchisescu, “GHUM & GHUML: Generative 3D Human
Shape and Articulated Pose Models,” in 2020 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), Seattle, WA,
USA, 2020, pp. 6183–6192.

[37] “MediaPipe Holistic,” Accessed: Apr. 3, 2021. [Online]. Available:
https://google.github.io/mediapipe/solutions/holistic

1152


